Researchers have developed a method of reducing pain-associated behaviors through the creation of decoy molecules that prevent pain after injury.
Through RNA-based medicine, researchers have developed a method of reducing pain-associated behaviors through the creation of decoy molecules that prevent pain after injury, according to a study published in Nature Communications.
“Pain is a pervasive and devastating problem,” Zachary Campbell, PhD, director of the Laboratory of RNA Control at the University of Texas at Dallas, said in a statement. “It’s the most prominent reason why Americans seek medical attention. Poorly treated pain causes enormous human suffering, as well as a tremendous burden on medical care systems and our society.”
Campbell conducted the research alongside Ted Price, PhD, associate professor from the Neurobiology Research Group, and Michael Burton, PhD, assistant professor from the School of Behavioral and Brain Sciences.
Campbell along with other researchers believed that pain could be blocked by interrupting the pain-protein synthesis that is coded in mRNA facilitates within the genome. This will reduce inflammation and impair pain behaviors. The team designed an RNA mimic that was injected on mouse models which showed positive results on reducing pain.
“We’re manipulating one step of protein synthesis,” Campbell explained. “Our results indicate that local treatment with the decoy can prevent pain and inflammation brought about by a tissue injury.”
The researchers found great difficulty in working with the RNA-based compound as the rapid metabolism of the molecules had them degrading quickly within the cells. However, the study found more information on nociceptors, specialized nerve cells that communicate with the brain in response to thermal, chemical, or mechanical stimuli.
Campbell also finds that this new therapy is a step in the right direction by moving away from prescribed pain medications that affect the reward center of the brain. “The ongoing opioid crisis highlights the need for pain treatments that don’t create addictions,” he said. “Hopefully, this is a step in that direction.”
This RNA mimic technology is the first of its kind that will be able to treat a variety of medical issues in the future.
“To the best of our knowledge, this is the first attempt to create a chemically stabilized mimic to competitively inhibit RNA to disrupt RNA-protein interactions,” he said. “Our approach suggests that targeting those interactions may provide a new source of pharmacological agents. This proof of concept allows us to open a whole new area of science by virtue of the route that we’re attacking it.”
References
Barragán-Iglesias P, Lou TF, Bhat VD, et al. Inhibition of Poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice. Nat Commun. 2018;9(1). doi:10.1038/s41467-017-02449-5.
Could On-Body Delivery of Isatuximab Bring More Competition to Anti-CD38 Myeloma Treatment?
June 6th 2025Results for IRAKLIA show noninferiority for Sanofi's on-body delivery system for isatuximab, compared with IV administration. Patients overwhelmingly preferred the hands-free delivery option.
Read More
ICS Use Tied to Fewer Exacerbations in Patients With Bronchiectasis and Elevated Blood Eosinophils
June 6th 2025Inhaled corticosteroid (ICS) use was common among patients with bronchiectasis and was associated with reduced exacerbations and hospitalizations in those with elevated blood eosinophil counts.
Read More
Real-World Data Support Luspatercept vs ESAs for Anemia in Lower-Risk MDS
June 5th 2025Patients with myelodysplastic syndrome (MDS) who received luspatercept showed greater hemoglobin gains and transfusion independence compared with erythropoiesis-stimulating agents (ESAs) in a real-world analysis.
Read More
At EHA 2025, Hematology Discussions Will Stretch Across Lifespans and Locations
June 5th 2025The 2025 European Hematology Association (EHA) Congress, convening virtually and in Milan, Italy, from June 12 to June 15, 2025, will feature a revamped program structure for the meeting’s 30th anniversary while maintaining ample opportunities to network, debate, and absorb practice-changing findings in hematology and oncology.
Read More