• Center on Health Equity & Access
  • Clinical
  • Health Care Cost
  • Health Care Delivery
  • Insurance
  • Policy
  • Technology
  • Value-Based Care

Dr Andrew Srisuwananukorn on the Potential for AI in Differentiating prePMF and ET

Commentary
Video

Andrew Srisuwananukorn, MD, of the Ohio State University Comprehensive Cancer Center, explained the potential of artificial intelligence (AI)-based support tools for differentiating primary myelofibrosis (prePMF) and essential thrombocythemia (ET) in the community setting.

An artificial intelligence (AI) model was able to differentiate between primary myelofibrosis (prePMF) and essential thrombocythemia (ET) with 92.3% accuracy by examining digital whole-slide images, according to a study presented at the 2023 American Society of Hematology Annual Meeting and Exposition.

AI-based decision support tools have potential to increase diagnostic accuracy for physicians in the community who may not see patients with prePMF or ET often, said Andrew Srisuwananukorn, MD, of Ohio State University Comprehensive Cancer Center, lead author of the study.

In this interview, Srisuwananukorn discussed the potential benefits and considerations for the development of AI algorithms to help diagnose these conditions.

Transcript

What is the potential value of implementing AI to assist in appropriately diagnosing patients with prePMF and ET in the clinical setting?

I view the benefit of a potential algorithm such as the one that we've created to be used ubiquitously across multiple centers. I find that the value of such a tool might be helpful in community practices that don't necessarily see myeloproliferative neoplasms on a consistent basis. These algorithms are cheap and affordable to be used and are equitable across different countries.


As AI use becomes more common, what can be done to ensure these algorithms are developed effectively and ethically?

I think there are 2 aspects that we really should be considering as we develop these AI algorithms. Number 1, it's important for us to understand that the algorithm was developed on a patient cohort, and we really want that patient cohort to be representative of the general population. It might accidentally learn a feature of the cohort that has no basis in biology, so it's important that our algorithm is representative of all patient cohorts of at-risk populations.

Related Videos
Robin Glasco, Spencer Stuart
Firas El Chaer, MD, smiling during a video interview
Firas El Chaer, MD, smiling during a video interview
Picture of San Diego skyline with words ASH Annual Meeting 2024 and health icons overlaid on the bottom
Screenshot of an interview with Amir Ali, PharmD, BCOP
Mansi Shah, MD, assistant professor, Rutgers Cancer Institute of New Jersey
 Alvaro Alencar, MD, associate professor of clinical medicine, chief medical officer, University of Miami Sylvester Comprehensive Cancer Center
Dr Cesar Davila-Chapa
Screenshot of an interview with Nadine Barrett, PhD
Milind Desai, MD
Related Content
© 2025 MJH Life Sciences
AJMC®
All rights reserved.