Mikael Eriksson, PhD, epidemiologist at Karolinska Institute in Sweden, discusses the development and implementation of an artificial intelligence (AI) model to reduce bias and improve breast cancer prevention.
Mikael Eriksson, PhD, epidemiologist at Karolinska Institute in Sweden, explains how to reduce bias within artificial intelligence (AI) models using large data sets that can help prevent breast cancer. He outlined the development process and clinical pathway for the AI model.
Eriksson presented a long-term image-derived AI risk model for primary prevention of breast cancer at the San Antonio Breast Cancer Symposium 2024 between December 10 to December 13.
This transcript has been lightly edited for clarity.
Transcript
What steps were taken to mitigate potential biases in the AI model, such as algorithmic bias or data bias?
The biggest problem with the AI models is that they can learn very well but they can also start to learn the specific type of image data that are using it. The images, for instance, that are particular to that brand, the AI can start to learn that pattern so we need to have a big mix of data from different vendors, different screening routines, different caregivers, different countries, and different ethnicities.
When we have this very rich data set, then we can lower the bias of the AI learning specific features for one specific setting and it really captures the causal relationship between the image features and the outcome of breast cancer.
How do you envision the integration of this AI model into routine clinical practice?
Yeah, so we have a typical phase. We start by developing the model and that is done in retrospective data and as we are epidemiologists, we are very keen on having large data sets and that coincides very well with AI because it really needs large data sets. Then we go into the prospective setting where we test the data for completely new scenarios that the AI has not been seen before.
Then we come into the clinical trials where we really, in the best possible way, can randomize women into different arms and then test the AI model in the best possible ways. After that comes the potential clinical approval of the model.
Managed Care Cast Presents: BTK Inhibitors in Treatment-Naive Patients With CLL and MCL
December 26th 2024A trio of experts discuss the treatment of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) with Bruton tyrosine kinase (BTK) inhibitors, including cost considerations.
Listen
HS Treatment Goals: Better Quality of Life, Not Just Control
January 3rd 2025For part 3 of our discussion with Chris Sayed, MD, we tackle several important topics in the hidradenitis suppurative (HS) and inflammatory disease space: patient quality of life, medication and treatment goals, and the possibility of a cure.
Read More
Dr Yehuda Handelsman: DCRM Guidelines Are Shaping Integrated, Global CRM Care
January 3rd 2025In part 2 of our interview, Yehuda Handelsman, MD, discusses how cardiorenalmetabolic (CRM) disease management is advancing with the 2022 Diabetes, Cardiorenal, and Metabolic (DCRM) multispecialty practice recommendations and the updated DCRM 2.0 guidelines.
Read More
Stripped of Fucose, Powerful Monoclonal Antibody Shows Promising Results in MDS Dosing Study
January 2nd 2025Nicole Grieselhuber, MD, PhD, of The Ohio State University, discusses results from Part D of a dosing study involving patients with previously untreated higher-risk myelodysplastic syndrome (MDS) who were treated with a combination of SEA-CD70 and azacitidine.
Read More