Chimeric antigen receptor (CAR) T cells are lymphocytes genetically engineered to recognize and bind to specific proteins on cancer cells. Studies are currently underway for applications in other fields.
The promise of chimeric antigen receptor (CAR) T-cell therapy is quickly spreading beyond the cancer space, as evidenced by research published in a recent issue of JAMA on possible new treatments for heart failure.
This group of researchers investigated the use of CAR T cells to repair heart damage caused by cardiac fibrosis, a condition in which fibroblasts—typically helpers in wound healing and maintaining tissue structure—are deposited in excess in the heart, causing it to stiffen. Essentially, this excess “remodels” the heart, the authors say. But few treatments are available to improve symptoms in humans and nothing is approved to reverse the deposits.
CAR T cells are lymphocytes genetically engineered to recognize and bind to specific proteins on cancer cells. That they are chimeric means more than 1 type of tissue is contained in their genetic makeup. Currently, they are used as immunotherapy treatment in various types of leukemia in patients up to age 25 years, who are infused with their own altered cells.
“The use of engineered T cells to treat cancer has revolutionized oncology, and the power of manipulating the immune system is more and more evident in many areas of medicine,” said senior author Jonathan Epstein, MD, of the University of Pennsylvania.
Led by postdoctoral researcher Haig Aghajanian, the group first engineered mouse models with cardiac fibroblasts that expressed a specific peptide. They were then treated with CAR T cells that targeted that peptide, and after 4 weeks, the cardiac fibrosis was significantly reduced compared with the control group.
The second step involved uncovering a protein target for the CAR T cells that the cardiac fibroblasts also expressed. Using gene expression data, the researchers landed on fibroblast activation protein, “a cell surface glycoprotein expressed during embryonic development and active tissue remodeling.”
Again, the cardiac fibrosis was significantly reduced after a month. There was also improvement in heart function.
“The very first experiments were crystal clear, and we knew immediately we were on to something,” Epstein said. “We would like to engineer an even smarter T cell that can be turned on and off to limit any unwanted activities.”
Despite these positive results and FDA approval for use in treating patients with cancer, moving forward with CAR T-cell treatment in the heart failure space remains just a goal for now, with additional safety studies needed in large animal models.
Future researchers will also need to consider that there are instances in which activated fibroblasts protect a damaged heart by providing stabilization, so that if destroyed by T cells, there is a risk of further heart damage.
Reference
Hampton T. Exploring the potential of CAR-T therapy for heart failure. JAMA. 2019;322(21):2066-2067. doi: 10.1001/jama.2019.18942.
Racial, Ethnic Disparities May Impact Age Differences at First Heart Failure Hospitalization
September 4th 2025Social determinants of health were associated with a younger age of first hospitalization for heart failure in Black and Hispanic patients when compared with Asian and White patients.
Read More
What It Takes to Improve Guideline-Based Heart Failure Care With Ty J. Gluckman, MD
August 5th 2025Explore innovative strategies to enhance heart failure treatment through guideline-directed medical therapy, remote monitoring, and artificial intelligence–driven solutions for better patient outcomes.
Listen
Patients With HFpEF May Benefit From Accelerated Cardiac Pacing
August 28th 2025In an observational extension of the myPACE clinical trial, researchers found that a personalized accelerated pacing in patients with heart failure with preserved ejection fraction (HFpEF) and a preexisting physiological pacer saw a slower trend in adverse cardiac events and overall improved health status.
Read More
The Importance of Examining and Preventing Atrial Fibrillation
August 29th 2023At this year’s American Society for Preventive Cardiology Congress on CVD Prevention, Emelia J. Benjamin, MD, ScM, delivered the Honorary Fellow Award Lecture, “The Imperative to Focus on the Prevention of Atrial Fibrillation,” as the recipient of this year’s Honorary Fellow of the American Society for Preventive Cardiology award.
Listen
Finerenone Demonstrates Safety and Efficacy in Heart Failure When Combined With Diuretics
August 13th 2025Clinical trial results establish the safety and efficacy of finerenone to help preserve potassium levels and reduce sodium in patients on diuretics with heart failure and mildly reduced ejection fraction or preserved ejection fraction.
Read More
Genetics, Comorbidities Associated With Cardiomyopathy and Atrial Fibrillation
August 13th 2025The cause of dilated cardiomyopathy (DCM) can be associated with the presence of the TTN gene combined with preexisting comorbidities like atrial fibrillation, which increase the odds of developing DCM.
Read More