The 5-year survival rate for triple-negative breast cancer (TNBC) is about 77%. The recurrence rate is highest in the first 3 years after treatment, but falls off at the 5-year mark—although the survival rate at this time point tends to be lower. Because TNBC cells lack the hormone receptors for estrogen and progesterone and do not overexpress the human epidermal growth factor receptor 2 gene, treatment often involves chemotherapy, radiation, and surgery. Targeted treatments are not used with TNBC.
The journal Oncogene recently published results on an investigation into the drivers behind triple-negative breast cancer (TNBC). Because the disease has such high recurrence and low survival rates, investigators from Manchester, Glasgow, and Sheffield universities sought to better understand what triggers, and arrests, the growth of this subtype of breast cancer. Their results point to possible new inroads in treating TNBC with targeted therapy in the future.
The 5-year survival rate for TNBC is about 77%.1 The recurrence rate is highest in the first 3 years after treatment, but falls off at the 5-year mark1—although the survival rate at this time point remains lower.2 Because TNBC cells lack the hormone receptors for estrogen and progesterone and do not overexpress the human epidermal growth factor receptor 2 gene, treatment often involves chemotherapy, radiation, and surgery.2 Targeted treatments are not used with TNBC, at least not yet.
The present study investigated the effects of the transcriptional co-regulator CBFβ, which the authors knew “facilitates the function of all 3 RUNX transcriptional factors.” Patients with TNBC who express the RUNX transcription factors tend to have a poorer prognosis. In particular, when RUNX2 and CBFβ are both expressed, TNBC cells have a greater tendency to be metastatic.3
“Mutations in CBFβ are amongst the most frequently reported for breast cancer patients,” the authors noted. “Since CBFβ forms functional complexes with all RUNX transcription factors, it is essential to establish its role in breast cancer metastasis.”
They used MDA-MB-231 cells for their model experiments, adding and removing CBFβ to show its ability to power, perhaps influence, the metastatic process. Their results provide a greater understanding of CBFβ’s role in the transition of TNBC cells between the epithelial and mesenchymal phenotypes, which influence disease progression.3
“Triple-negative breast cancer is a particularly devastating disease which doctors, scientists and patients are investing much time and effort into finding new and better treatments,” stated Paul Shore, BSc, PhD, University of Manchester, lead study researcher. “So this discovery is an important milestone in the understanding of how metastatic cancer spreads—though clearly, there’s a long way to go before it has a chance of being translated into effective therapies.”
Here are some of their important findings3:
“Our findings that CBFβ is essential to maintain the mesenchymal phenotype, and that it contributes to the formation of bone metastases, suggests that in principle inhibiting this complex might maintain metastatic colonies in a less aggressive epithelial state by driving MET. Thus, targeting the RUNX/CBFβ complex in this way might be a viable option to treat a sub-group of triple-negative breast cancer patients,” the authors concluded.
References
1. Recurrence rate for triple-negative breast cancer. Healthline website. healthline.com/health/triple-negative-breast-cancer-recurrence#outlook. Accessed February 14, 2020.
2. Triple negative breast cancer outlook: survival rates. Healthline website. healthline.com/health/triple-negative-breast-cancer-outlook-survival-rates-stage. Accessed February 14, 2020.
3. Ran R, Harrison H, Ariffin NS, et al. A role for CBFβ in maintaining the metastatic phenotype of breast cancer cells [published online January 31, 2020]. Oncogene. doi: 10.1038/s413888-020-1170-2.
Racial Inequities in Guideline-Adherent Breast Cancer Care and Timely Treatment
November 19th 2024Older non-Hispanic Black adults with early-stage breast cancer are less likely to receive timely treatment and guideline-concordant care, increasing their risk of death compared with non-Hispanic White women.
Read More
Emily Goldberg Shares Insights as a Genetic Counselor for Breast Cancer Risk Screening
October 30th 2023On this episode of Managed Care Cast, Emily Goldberg, MS, CGC, a genetic counselor at JScreen, breaks down how genetic screening for breast cancer works and why it is so important to increase awareness and education around these screening tools available to patients who may be at risk for cancer.
Listen
The Disproportionate Impact of the Pandemic on Health Care Disparities and Cancer
February 22nd 2022On this episode of Managed Care Cast, we discuss how already wide health care inequities in cancer are becoming much worse because of the COVID-19 pandemic, with guest Monica Soni, MD, associate chief medical officer at New Century Health.
Listen
Advancing Breast Cancer Care With HER2-Targeted Therapies
October 10th 2024In this interview from our Institute for Value-Based Medicine® event in Boston, we speak with Michael Hassett, MD, MPH, Dana-Farber Cancer Institute, on the clinical significance and cost implications of HER2 in the breast cancer space.
Read More
Managing Germline Mutations in Hereditary Breast Cancer Risk
October 7th 2024Hereditary breast cancers are caused by germline mutations, which are genetic mutations inherited at conception and so called because they originate in germ cells, those that develop into reproductive cells and become eggs in female individuals and sperm in male individuals.
Read More