Migvis Monduy, MD, medical director of Neuromuscular and Movement Disorders Programs at Nicklaus Children's Hospital, discussed the most promising areas of research in Duchenne muscular dystrophy (DMD), as well as the mechanisms of gene therapies for DMD.
Migvis Monduy, MD, medical director of Neuromuscular and Movement Disorders Programs at Nicklaus Children's Hospital in Miami, Florida, discussed the most promising areas of research in Duchenne muscular dystrophy (DMD), as well as the mechanisms of gene therapies for DMD.
What are the most promising areas of research in DMD right now?
[There's] lots and lots of research, and a lot to keep up with—it's hard sometimes. But the gene therapies are a promising area of research. Different companies are trying to have different gene therapies developed for this particular indication. And oftentimes, [we're] trying to find a way of replacing the full length of the dystrophin gene, as opposed to micro-dystrophin or mini-dystrophin—so, finding alternative methods of having perhaps viral vectors that could replace parts of it, and then they'll assemble back together intracellularly again, or finding other ways of having gene therapy delivered without viral vectors that don't activate the immune system.
I think those will be areas for future research that are really, really promising, as well as other combinations of therapies—not just the steroids, but nonsteroidal things at the cellular level, working on regenerating muscle for the patients that have already had some of that muscle [loss] before they receive their gene therapy. I think in the long term, it's going to be a combination of different things and we're still trying to figure out what that will look like and what will work.
How is gene therapy being used to treat DMD, and how have advances in this area impacted the outlook for patients?
Gene therapy is really the latest development, with 1 particular gene therapy product already in the market since last year. It uses a viral vector to carry that micro-dystrophin, so a synthetic version of the gene, into the cells. So, you're infecting the cells in the body of the patient with this virus that is devoid of any actual viral DNA, but actually has the micro-dystrophin in there. We're hoping to create some dystrophin protein in the muscle cells by doing that, and then limit the problems with weakness and the progression of the disease. We can't say it's a cure, because you're not replacing the full length of the dystrophin protein, but hopefully, it will be enough to halt the disease progress and it can be sustained over the years. Again, this is all new, so that will have to be seen over time.
Managed Care Cast Presents: BTK Inhibitors in Treatment-Naive Patients With CLL and MCL
December 26th 2024A trio of experts discuss the treatment of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) with Bruton tyrosine kinase (BTK) inhibitors, including cost considerations.
Listen
HS Treatment Goals: Better Quality of Life, Not Just Control
January 3rd 2025For part 3 of our discussion with Chris Sayed, MD, we tackle several important topics in the hidradenitis suppurative (HS) and inflammatory disease space: patient quality of life, medication and treatment goals, and the possibility of a cure.
Read More