Prescriptive analytics, not just predictive analytics, will make a difference in patient outcomes, said John Frownfelter, MD, FACP, chief medical officer of Jvion.
Prescriptive analytics, not just predictive analytics, will make a difference in patient outcomes, said John Frownfelter, MD, FACP, chief medical officer of Jvion.
Transcript
Is the future of healthcare predictive analytics?
Predictive analytics is essentially risk stratifying patients. That’s already going away and it’s going to become very passé, and I’ll tell you why. Predictive analytics—anyone can do a risk model now and then apply it to a population, and identify patients at risk for everything from who’s at risk from being admitted to the hospital to who’s at risk of not taking their medicine to who’s at risk for dying in the next 30 days. Ok great. But then what? What do you do with that information when you just know they’re high risk?
Oftentimes, these are patients that we already know that that’s likely to happen. And so it doesn’t add to clinical knowledge for a seasoned clinician. Secondly, if it is a patient that we way, “Ok, we’re going to do everything for these high-risk patients,” again, they may or may not be impactable. And then there are a number of patients in these risk models with just doing predictive modeling that the risk actually isn’t true and we’re throwing a lot of good resources after bad, if you will.
Prescriptive analytics isn’t just taking a risk model then, but it really is a different approach using artificial intelligence [AI], big data, and some different approaches that I won’t get into all the math on. But to understand patients holistically and to identify the patients, not only the risk, but again the nature of the risk and then ultimately, which particular interventions are going to change the outcome for that patient.
Now, that all sounds good. If you look at, “well, how do I compare these different approaches for relative benefit?” the first way you compare them is on performance of the model. Which one is better at predicting? Great. If you have a little bit more longevity, you can look at patient outcomes. And what we’re seeing with the application of AI is improved patient outcomes. We’re seeing reductions in hard end points. In oncology, we’re seeing reductions in patients who are admitted to hospice in the last 3 days of life. That’s a phenomenal thing for patients. We’re seeing reductions in emergency room visits and in hospitalizations. We’re seeing decreases in pain scores and a decrease in depression.
These are things by which not only oncology practices are held accountable, but patients care about. And we’re seeing the outcomes. That’s truly success, it isn’t math modeling and who has got a better performance from a model standpoint, but who is changing patient care.
Community Investment, Engagement Are Essential to Fully Address Cardiovascular Health Disparities
November 19th 2024Community-based researchers can teach clinicians a lot about how to best approach underserved populations disproportionately impacted by cardiovascular health complications.
Read More
Building Trust, Breaking Barriers: Health Care Leaders Tackle Primary Care Challenges
August 8th 2024On this episode of Managed Care Cast, we're talking with the chief medical officers of CVS Health and Aetna, as well as CVS Health's chief health equity officer, about primary and preventive care engagement, the impact of telehealth, and the role of trust in patient-provider relationships.
Listen
Frameworks for Advancing Health Equity: Health Equity by Design
July 23rd 2024Melissa Clarke, MD, CMQ, the chief health equity officer at Elevance Health, explains "Health Equity by Design" and how Elevance Health is committed to ensuring a personalized and intentional approach for all its members.
Listen