We need more educational or clinical projects that have a real-world impact on reducing disparities in dermatology, said Art Papier, MD, dermatologist, CEO, VisualDx.
Art Papier, MD, dermatologist, CEO, VisualDx, talks about disparity prevention in dermatology, including the second year of Project IMPACT, and considerations in artificial intelligence (AI) and machine learning.
Transcript
What are your goals for the second year of Project IMPACT?
I think we really want to see specific projects that are either educational or clinical that have real-world impact. Project IMPACT, the name, we chose that really because we want to be substantial. We don't want to just be performative and be just discussing an issue. We want to see some results. In the second year, we want to see more people involved and we want to see specific projects, and we're hoping to do specific projects around medical education.
How can we ensure future projects are including underserved populations in their research?
I think there's tremendous interest in primary care. So, in rural areas or inner city areas where you have federally qualified health clinics serving the underserved, there's a real need to bring the kind of information that those health care professionals can use in real time. In my work, I've been thinking about this problem, "What's the right information for the right patient population?" So we're thinking about, if the clinic is urban, what do they need? If the clinic's rural, what's the patient population? How do we really bring customized information to each population?
Since dermatological conditions can appear differently depending on skin type, what steps should be taken in AI development?
People are beginning to understand that AI and machine learning are totally dependent on good quality data. It's garbage in, garbage out. You have to have good data, and if you train your algorithms just on white skin, it's not going to work on brown skin.
So in our work at VisualDx, as an example, we've been collecting imagery for over 20 years, and since the start of our efforts, it's always been equitable. We have something like 32% of the imagery in the system is in brown skin, and we have tags on that imagery so that when we train our AI, it's equitable. This is key to having equity in AI and machine learning—it's the data you train on and how precise the data is.
The Latest in New and Emerging Therapies in Schizophrenia: Dr Megan Ehret
October 22nd 2024In addition to Cobenfy being approved for schizophrenia, there are other drugs with novel mechanisms being studied that may mean combination therapies or, at least, more options for patients in the future.
Read More
Sustaining Compassionate Trauma Care Across Communities
September 30th 2024September is National Recovery Month, and we are bringing you another limited-edition month-long podcast series with our Strategic Alliance Partner, UPMC Health Plan. In our final episode, we speak with Lyndra Bills, MD, and Shari Hutchison, MS.
Listen
Bimekizumab Poised to Tackle Unmet HS Treatment Needs
October 18th 2024Hidradenitis suppurativa (HS) is an inflammatory, chronic disease with very high symptom and physical burdens, and it can get progressively worse over time if it's inadequately treated, explained Amit Garg, MD, founding chair, Department of Dermatology, Northwell Health.
Read More
Expanding Access to NSCLC Innovations: Challenges and Opportunities
October 18th 2024The current research focus for Umit Tapan, MD, Boston Medical Center, is reducing disparities in lung cancer care and improving treatment access, in particular for immunotherapy and targeted treatments.
Read More